
Fast Mapping on Myrinet Networks

Erik A. Hendriks

Advanced Computing Laboratory

Los Alamos National Laboratory∗

hendriks@lanl.gov

March 17, 2004

Abstract

This paper presents an alternate method for discovering new switches and comparing switches when

mapping a Myrinet network. Existing methods for mapping Myrinet networks rely on timeouts and

are prone to false negatives due to network deadlock. Our algorithm increases the mapper’s speed by

providing a fast negative answer without relying on a timeout. In addition, the mapper’s reliability is

increased because it allows the mapper to detect if network deadlock has occurred. Mapping time on

our 1024 port network has been reduced from approximately 7 minutes to 15 seconds.

1 Introduction

Myrinet is a source routed network. Each node has a table of routes to reach the other nodes in the network.
Before routes can be generated a mapper program needs to produce a map of the network. The mapper
runs on one of the nodes in the network and generates a network map by sending a series of scout packets
into the network. These scouts probe for network features such as switches and hosts. The mapping step
can be very time consuming since thousands of scouts are required to map even moderately sized networks.

Being able to produce a network map quickly has a direct impact on the performance of large systems.
On Science Appliance systems [2] like Ed, Pink (1024 nodes) and ASCI Lightning (1408 nodes) where
the Myrinet network is used for all system management as well as by applications, the network must be
configured and working before moving on to any other step in cluster setup.

In the case of network failures, the mapper speed impacts how fast the system can react and map around
failures. Isolation of network problems on a large network almost always involves some degree of trial and
error and the mapper must remap the network any time a change is made.

In this paper we present the guarded scouting algorithm for scouting a Myrinet network. The guarded
scouting algorithm has decreased the the time required for mapping by between one and two orders of
magnitude depending on the version of the Myricom mapper that was used and the size of the network.

2 Background

This section describes how routing and mapping on a Myrinet network. The first few bytes at the beginning
of every Myrinet packet is the route [1]. A route is a series of bytes. Each byte is an offset in a switch. For
example, if a packet comes in on port 3 and the next routing byte is -2 the packet will leave the switch on
port 1. Each switch that a packet goes through will strip off the first byte and route the packet accordingly.
A routing byte of 0 is legal — it will route the packet back out the same port it came in on. The routes used
to reached every node in the network are computed using a network map and stored in a table of routes in
every node.

∗Los Alamos National Laboratory is operated by the University of California for the National Nuclear Security Adminis-

tration of the United States Department of Energy under contract W-7405-ENG-36. LANL LA-UR-04-1655

1



Mapper
SW1 SW2

A B

Figure 1: Switch Scouting. This figure shows the path of the scout packet (S) in the case where the
mapper is probing for the existence of a switch. The mapper knows that SW1 exists and is probing for the
existence of SW2. If SW2 exists, the scout packet will return to the mapper. Otherwise, the mapper will
timeout and conclude that SW2 doesn’t exist.

B

A

Mapper

Figure 2: Switch Comparison. If the same switch is reached by two different routes, the mapper can
verify this by sending a scout to the switch using one route and back with the other. In this example the
mapper has a route to ports A and B on this switch. The packet is sent to port A, it makes one hop inside
the switch to port B and returns using the reverse of the route to port B.

The mapper builds a map of the network by sending scout packets. The scout packets are small packets
sent out with particular routes. Some of these will end up returning to the mapper and some will not. The
mapper uses scouts to answer three different questions:

1. Given a route, is there a host there?

2. Given a route, is there a switch there?

3. Given two routes to switches, do they lead to different ports on the same switch?

Probing for a host is relatively simple. The host will respond to the scout with a packet identifying
itself. Each host is uniquely identified by a MAC address.

Probing for Myrinet switches is somewhat more complicated. Switches do not identify themselves in
any way. The only way the mapper can detect the presence of a switch is by sending a packet through
it. Figure 1 illustrates the procedure used by the mapper to detect a switch. The mapper knows that the
switch SW1 exists and it has a route to port A on SW1. The mapper is probing for the existence of the
switch SW2 on port B of SW1. The mapper tries to send a scout packet too SW2 and have it loop back to
the mapper. If the scout packet returns to the mapper, then SW2 exists. Otherwise it doesn’t.

This only tests for the existence of a new switch. It does not identify the switch. There are usually
many routes to each switch and it is possible that the mapper has already seen this switch using some other
route. This leads to the need to answer question 3: Given two routes to switches, do they lead to different
ports on the same switch?

This question is answered in a similar fashion. In this case the mapper has two different routes to two
switches that it wants to compare to see if they are the same switch. The mapper can determine if these
two switches are the same switch by sending a packet which will go to the switch using one route and
return from the switch using the other route. Figure 2 illustrates the switch comparison procedure. In this
example, the mapper knows the routes to two switch ports (A and B). The scout packet will take the route
to port A, make a hop in the switch and use the route to B (reversed) to get back to the mapper.

2



If the scout makes it back to the mapper, the mapper knows that both of those routes lead to the same
switch. Since the mapper supplied the hop to be taken in the switch, this also tells the mapper the relative
numbering of the two ports.

By answering these three questions over and over again the mapper can build a map of the network.
When mapping a large network (e.g. 1024 hosts) the bulk of the time is spent doing switch comparison.
There are several practical problems:

Timeouts: Negative answers are obtained by timeouts in all three cases. The timeout must be long
enough to handle the worst case. These timeouts are much longer than the time required for a
positive response which is the time required for a packet to return to the sender. The answer is
negative more often than positive so the mapper spends the bulk of its time waiting on timeouts.

Deadlock: The routes required to map the network are not deadlock safe. If there is other traffic on the
network — which is almost always the case — the scout packets can cause deadlock with other traffic
on the network. The switches solve the deadlock problem by simply dropping packets if there is no
progress on a switch port for a long period of time (∼ 1s). This is disturbing to any applications which
may be running and problematic for the mapper because it leads to false negatives. The deadlock
problem is unavoidable in general. Avoiding deadlock requires knowledge of the network topology.

This paper presents the guarded scouting algorithm. The guarded scouting algorithm provides an
improved method for answering questions 2 and 3. It also provides a fast no answer as well as a fast yes

answer. It also allows the mapper to detect that deadlock as occurred in the network. This makes it possible
for the mapper to avoid false negatives as well allowing it to back-off and allow the network to clear itself
when a deadlock occurs. Detecting deadlock virtually eliminates false negatives.

The guarded scouting algorithm sends additional scout packets (which we will call guard packets) im-
mediately after the network scouts. Guard packets are sent along known good routes. They are sent after
the scout packets in such a way that they are guaranteed to arrive after the scout packets. This allows the
mapper to obtain a no response quickly if the guard returns and the scout has not returned. Also, if the
guard packet goes missing, it is likely that a deadlock has occurred.

3 Presumptions

These are the presumptions that were made in designing the guarded scouting algorithm. These assumptions
appear to pan out pretty well in practice.

• Raw sends are sent in order. This statement is stronger than necessary since the mapper can wait for
one send to complete before starting the next one. The real presumption is that the MCP will not
reorder receives for us after the fact.

• Raw sends are received in the order. The user space application must receive receive events in the
order that the packets are received on the network.

• The network links are FIFOs. There is no way for one packet to pass another packet on the network
if they both take the same route.

• The network is at least mostly reliable. The network does not drop packets for no reason. The error
rate is low. A small number of retries should be good enough to deal with CRC errors and the like.

4 Scouting for New Switches

Figure 3 illustrates scouting for a new switch using guard packets. The scout packet (S) takes the same
route as it does in the example without guard packets (Figure 1). The guard packet (G) is sent immediately
after S and loops back inside of SW1 instead of SW2. Since the mapper knows that SW1 exists, the route
that G will take is known to be good.

The idea behind using the guard scout is that S will stay ahead of G. Then G’s arrival will indicate
that S is lost. The mapper’s conclusion is based on which packet (S or G) returns first:

3



Mapper
SW1 SW2

G SA B

Figure 3: Switch Scouting with Guard Packets. This figure shows the paths of the scout packet (S)
and the guard packet (G) in the case where the mapper is probing for the existence of a switch. The mapper
knows that SW1 exists and is probing for the existence of SW2. The guard packet is sent after the scout
packet. The scout should be long enough to occupy the input and output of port A on SW1. This prevents
the guard packet from passing the scout.

B

A

Mapper
S

G2

G1

Figure 4: Switch Comparison. This figure shows the paths of the scout packet (S) and the guard packets
for switch comparison. The mapper has two routes to two different switch ports (1 and 2). It wants to
determine if these two ports are on the same switch. This diagram shows the routes of the scout and guard
packets in the case that they actually are the same switch.

Packet S Returns First
If S returns to the mapper, then the mapper can conclude that the switch SW2 exists. This case is
the same as if there were no guard packets.

Packet G Returns First
If G returns to the mapper first, then the mapper concludes that S is lost since G can’t get ahead of
S. This implies that the switch SW2 doesn’t exist. This gives the mapper a fast no response without
a timeout.

Neither returns in a short time
Since G’s route was known to be good, the mapper concludes that some kind of network problem has
occurred — most likely a network deadlock. The mapper waits and retries.

In order for S to stay ahead of G it must be long enough to occupy the input half of port A on SW1

as well as the output half at the same time. The cut-through nature of Myrinet switches should make this
possible. This will prevent G from getting through SW1 before S.

There is a chance that there is a deadlock or some other problem (e.g. CRC error) that affects S but
not G. This could cause G to come back first even though the switch exists. A small number of retries
should be sufficient for avoiding this case.

5 Comparing Switches

A technique similar to the one used for switch scouting can be used for switch comparison. Figure 4
illustrates switch comparison with guard packets. Two guard packets are required in this case — one to
follow the scout packet to the switch and one to follow the scout packet back.

4



The mapper has two known good routes that lead to switches in the network. The mapper is checking
to see if both of those routes lead to different ports on the same switch. The scout packet uses one route to
get to the switch and tries to use the other route to get back to the mapper node. This is the same route
that the scout packet takes in the example without guard packets (Figure 2).

The first guard packet (G1) is sent immediately following the scout packet (S). G1 follows S along the
route to the switch and then returns the way it came. Since G1 follows S, G1’s return indicates that S has
made it through the switch. After G1 returns, the mapper sends G2 along the other path to the switch
— the path that S will use to return to the mapper. Since S has already passed through the switch, G2

will leave through port B after S and follow S back from the switch. The mapper’s conclusion is based on
which packet (S or G) returns first:

Packet S Returns First
If S returns to the mapper, then the mapper can conclude that the two routes lead to same switch.
This case is the same as if there were no guard packets. If S returns before G1 there is no need to
send G2.

Packet G2 Returns First
If G2 returns to the mapper first, then the mapper concludes that S is lost since G2 can’t get ahead
of S. This implies that the two routes do not lead to the same switch. This gives the mapper a fast
no response without a timeout.

Nothing returns in a short time
Since G1’s and G2’s routes were known to be good, the mapper concludes that some kind of network
problem has occurred — most likely a network deadlock. The mapper will wait and retry.

There is a possibility that S would be dropped due to some network problem (e.g. CRC error). G2

could return first in that case. A small number of retries should be sufficient for avoiding this case.

6 Conclusion

Removing the reliance on timeouts has dramatically increased the speed of network mapping on our large
clusters. Our test system is Pink which is a 1024 node cluster with a 1024 port Myrinet network. This
network has 320 16-port switches in it. Our improved mapper reduced the mapping time from approximately
7 minutes to 15 seconds with a quiet network. In cases where there is a fair amount of traffic on the network,
our mapper has proven to be more resilient since it has a good chance of detecting when a deadlock has
occurred in the network.

Availability. The mapper software described in this paper is freely available on the web. It is licensed
under the terms of the GPL.
http://www.clustermatic.org/download/gm route-1.0.tar.gz

References

[1] Myrinet-on-VME protocol specification draft standard. Technical report, August 1998.

[2] Sung-Eun Choi, Erik A. Hendriks, Aaron J. Marks, Ronald G. Minnich, and Matthew J. Sottile. Life
with Ed: A case study of a LinuxBIOS/BProc cluster. In Proceedings of the 16th Annual International

Symposium on High Performance Computing Systems and Applications, June 2002.

5


